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Abstract
\
\ ;
This paper reviews some recent developments in the convex analysis
approach to inteper programming. These developments are based on viewing
inteper programs as disjunctive programs, i.e., linear programs with
disjunctive constraints, an approach which secems to be fruitful for 0-1
programming both theoretically and practically. On the theorctical side,
it provides structural characterizations which offer new insights. On the :
practical side, it produces a variety of cutting planes with desirable

properties and offers new ways of combining cutting planes with enumerative

techniques.,

h

t




e ————

Table of Contents

L EntEodue ERal < < cha s & s v s Srul s s sbelallahalolinte = wiste e s s e sl sl alalretorc il
2 Linear Programs with Logical Conditions..............000eeeveunns 6
3. The Basic Principle of Disjunctive Programming................... 9
L L ) ] e e e A O (S P S S e s S 15
5. The Convex Hull of a Disjunctive Set.........ccveveeeeennnnns . 20
6. Facial Disjunctive Programs................ e e LA o e i VR 33
7 Disjunctive Programs with Explicit Integrality Constraints....... 39 ‘
8. Some Frequently Occurring DIsjunctions .. . ..« e ees s essssiseessss 49 .
9. Combining Cutting Planes with Branch and Bound................... 56
10. Disjunctions from Conditional BoundS.............eeeeeneeenenenns 69

References




il d

e

DISJUNCTIVE PROGRAMMING
by

Egon Balas

1. Introduction

This paper reviews some recent developments in the convex analysis
approach to integer programming. A product of the last four years, these
developments are based on viewing integer programs as disjunctive programs,

i.e., linear programs with disjunctive constraints. Apart from the fact

that this is the most natural and straightforward way of stating many
problems involving logical conditions (dichotomies, implications, etc.),

the disjunctive programming approach seems to be fruitful for zero-one
programming both theoretically and practically. On the theoretical side!

it provides neat structural characterizations which offer new insights.

On the practical side, it produces a variety of cutting planes with desirable
properties, and offers several ways of combining cutting planes with branch
and bound.

The line of research that has led to the disjunctive programming approach
originates in the work on intersection or convex;ty cuts by Young [40], Balas [2],
Glover [23], Owen [36] and others (see also [13], [24], [42]). This geometrically
motivated work can be described in terms of intersecting the edges of the cone
originating at the linear programming optimum x with the boundary of some convex

set S, whose interior contains x but no feasible integer points, and using the

hyperplane defined by the intersection points as a cutting plane. An early
forerunner of this kind of approach was a paper by Hoang Tuy [29].
In the early 70's, research on intersection or convexity cuts was

pursued in two main directions. One, typified by [23], [18], [4], was




aimed at obtaining stronger cuts by including into S some explicitly or
implicitly enumerated feasible integer points. The other, initiated by [3],
brought into play polarity, in particular outer polars (i.e., polars of the
feasible set, scaled so as to contain all feasible 0-1 points in their
boundary), and related concepts of convex analysis, like maximal convex
extensions, support and gauge functions, etc. (see also [5], [15],

[19]). Besides cutting planes, this second direction has also produced

(see [5], [6]) a "constraint activating" method (computationally untested
to date) based on the idea of '"burying'" the feasible set into the outer polar

(without using cuts), by activating the problem constraints one by one, as

needed., This research has yielded certain insights and produced reasonably

strong cutting planes; but those procedures that were implemented (and, by the
way, very few were) turned out to be computationally too expensive to be
practically useful.

Iﬁ 1973 Glover [25] discovered that intersection cuts derived from a
convex polyhedron S can be strengthened by rotating the facets of S in
certain ways, a procedure he called polyhedral annexation. This was an
important step toward the development of the techniques discussed in this
paper. The same conclusions were reached indepe;dently (and concomitantly)
in a somewhat different context by Balas [7 ]. The new context was given
by the recognition that intersection cuts could be viewed as derived from a
disjunction. Indeed, requiring that no feasible integer point be contained
in the interior of S, is the same as requiring every feasible integer point
to satisfy at least one of the inequalities whose complements define the
supporting halfspaces of S. This seemingly innocuous change of perspective
proved to be extremely fruitful. For cne thing it led naturally and
immediately to the consideration of disjunctive programs in their generality

[8], [9], and hence to a characterization of all the valid inequalities




‘different signs. However, these efforts were focused on special cases.

3

for an integer program. By the same token, it offered the new possibility
of generating cuts specially tailored for problems with a given structure.
Besides, it offered a unified theoretical perspective on cutting planes
and enumeration, as well as practical ways of combining the two approaches.
Finally, it vastly simplified the proofs of many earlier results and opened
the way toc the subsequent developments to be discussed below.

Besides the above antecedents of the disjunctive programming approach
there have been & few other papers concerned with linear (or nonlinear)
programs with disjunctive constraints [26], [27]. The paper by Owen [36]

deserves special mention, as the first occurrence of a cut with coefficients of

The main conceptual tool used in studying the structural properties

of disjunctive programs is polarity. Besides the classical polar sets,

we use a natural generalization of the latter which we call reverse polar
sets [iO]. This connects our research to the work of Fulkerson [20], [21],
[22], whose blocking and antiblocking polyhedra are close relatives of the
polar and reverse polar sets. There are also connections with the work of
Tind [39] and Araoz [1]. One crucial difference in the way polars and
reverse polars of apolyhedron are used in our work, versus that of the above
mentioned authors, is the fact that we "dualize'" the reverse polar s# of a
(disjunctive) set S, by representing it in terms of the inequalities (of the
disjunction) defining S, rather than in terms of the points of S. It is
precisely this element which leads to a linear programming characterization
of the convex hull of feasible points of a disjunctive program.

Except for the specific applications described in sections 7 and 8,

which are new, the results reviewed here are from (81, [91, [10], [14].




We tried to make this review self-contained, giving complete proofs for @ |
most of the statements. Most of the results are illustrated on numerical
examples. For further details and related developments the reader is
referred to the above papers, as well as those of Glover [25],

Jeroslow [32], and Balas [11]. Related theoretical developments are also
to be found in Jeroslow [30], [31], Blair and Jeroslow [17], Zemel [41],
while some related computational procedures are discussed in Balas [12].

This paper is organized as follows. Section 2 introduces some basic

concepts and terminology, and discusses ways of formulating disjunctive
programs (DP). Section 3 contains the basic characterization of the family
of valid inequalities for a DP, and discusses some of the implicétions of
this general principle for deriving cutting planes. Section 4 extends the
duality theorem of linear programming to DP. Section 5 discusses the basic
properties of reverse polars and uses them to characterize the convex hull

of a diéjunctive set (the feasible set of a DP). It shows how the facets of
the convex hull of the feasible set of a DP in n variables, defined by a dis-
junction with q terms, can be obtained from a linear program with q(n + 1)
constraints.

In section 6 we addfess the intriguing question of whether the convex

hull of a disjunctive set can be generated sequentially, by imposing one

by one the disjunctions of the conjunctive normal form, and producing at

each step the convex hull of a disjunctive set with one elementary disjunction.
We answer the question in the negative for the case of a general DP or a
general integer program, but in the positive for a class of DP called facial,
which subsumes the general (pure or mixed) zero-one program, the linear
complementarity problem, the nonconvex (linearly constrained) quadratic

program, etc.,




The first 6 sections treat the integrality constraints of an (otherwise)
linear program as disjunctions. When it comes to generating cutting planes
from a particular noninteger simplex tableau, the disjunctions that can be
used effectively are those involving the basic variables. Section 7 discusses
a principle for strengthening cutting planes derived from a disjunction, by
using the integrality conditions (if any) on the nonbasic variables. Section 8
illustrates on the case of multiple choice constraints how the procedures of
sections 3 and 7 can take advantage of problem structure. Section 9 discusses
some ways in which disjunctive programming can be used to combine branch and
bound with cutting planes. In particular, if LP,, ke Q, are the subproblems
" associated with the active nodes of the search tree at a given stage of a
branch and bound process applied to a mixed integer program P, it is shown
that a cut can be derived from the cost rows of the simplex tableaux associated

with the problems LPk, which provides a bound on the value of P, often

considerably better than the one available from the branch and bound process.
‘Finally, section 10 deals with techniques for deriving disjunctions from
conditional bounds. Cutting planes obtained from such disjunctions have been

used with good results on large sparse set covering problems,
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2, Linear Programs with Logical Conditions

By disjunctive programming we mean linear programming with disjunctive
constraints. Integer programs (pure and mixed) and a host of other non-
convex programming problems (the linear complementarity problem, the general
quadratic program, separable nonlinear programs, bimatrix games, etc.) can
be stated as linear programs with logical conditions. In the present context
"logical conditions" means statements about linear inequalities, involving
the operations "and" (A, conjunction--sometimes denoted by juxtaposition),
“or' (V, disjunction), "complement of" (-, negation). The operation
"{f,..then" (=, implication) is known to be equivalent to a disjunction.
‘The negation of a conjunctive set of inequalities is a disjunction whose terms
are the same inequalities. The operation of conjunction applied to linear
inequalities gives rise to (convex) polyhedral sets. The disjunctions are
thus the crucial elements of a logical condition (the ones that make the
constv#int set nonconvex), and that is why we call this type of problem a

disjunctive program.

A disjunctive program (DP) is then a problem of the form
min {cxleZao, x>0, xel}

wheire A is an m x n matrix, a, is an m-vector, and L is a set of logical
conditions. Since the latter can be expressed in many ways, there are
many different forms in which a DP can be stated. Two of them are
fundamental.

The constraint set of a DP (and the DP itself) is said to be in

disjunctive normal form if it is defined by a disjunction whose terms do

not contain further disjunctions; and in conjunctive normal form, if it is

defined by a conjunction whose terms do not contain further conjunctions.
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The disjunctive normal form is then

(2.1) heQ ey

while the conjunctive normal form is

Ax > a,
(2.2) ot
v (dixzdio), jes
1
«Qy
or, alternatively,
ax 2 a5 i 1
2.29 ALY @x2d )| Ao A v (@x>d, ).
XZO 1GQ1 i€Q|S‘ =

Here each d1 is an n-vector and each di a scalar, while the sets Q and

0
Qj’ jeS, may or may not be finite. The connection between the two forms is
that each term of the disjunction (2.1) has, besides the m+n inequalities

of the system Ax > ag, x > 0, precisely one inequality dix > diO’ i er,

from each disjunction je€S of (2.2), and that all distinct systems

Ahx > ag, x > 0 with this property are present among the terms of (2.1); so
that, 1f Q (and hence each Qj’ j€8) is finite, then |Q| = | Zs le, where

m stands for cartesian product. Since the operations A and 3 are distributive
with respect to each other [i.e., if A, B, C are inequalities, A A (B VC) =
=ABV AC, and AV {3C) = (AVB) A (AVC)], any logical condition involving
these operations can be brought to any of the two fundamental forms, and each
of the latter can be obtained from the other one.

We illustrate the meaning of these two forms on the case when the DP is

a zero-one program in n variables. Then the disjunctive normal form (2.1) is

V (Ax>0, x>0, x= xh)
heQ




where xl,...,x!q| is the set of all 0-1 points, and |Q| = 2"; whereas the

conjunctive normal form is

Ax >0, x>0, (x, =0) V (x,=1), j=1,...,n.

J ]

Once the inequalities occurring in the conjunctions and/or disjunctions
of 2 DP are given, the disjunctive and conjunctive normal forms are unique.
It is a fact of crucial practical importance, however, that the inequalities
expressing the conditions of a given problem can be chosen in more than sne

way. For instance, the constraint set

3%; + xy - 2%y + x, =1

X tx+ x3t+x, < 1

xj =0orl, j=1,...,4,

whzn put in disjunctive normal form, becomes a disjunction with 24 = 16 terms;

but the same constraint set can also be expressed as

3x1 + Xy = 2x3 + x4 <1
4 Xy = 1
v V (x, = 0, Vj)
i=1 {x; =0, § # 1 J

which gives rise to a disjunction with only 5 terms.
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3. The Basic Principle of Disjunctive Programming

A constraint B is said to be a consequence of, or implied by, a constraint

A, if every x that satisfies A also satisfies B. We are interested in the
family of inequalities implied by the constraint set of a general disjunctive
program (DP). All valid cutting planes for a DP belong of course to this
family. On the other hand, the set of points satisfying all the inequalities
in the family is precisely the convex hull of the set of feasible solutions to
the DP., A characterization of this family is given in the next theorem,
which is an easy but important generalization of a classical result. Let

I R, R

€R, A ¢R » @& . ¢R , heQ (not necessarily finite) and

xeRn,acRn,oz 0

0

.let a® be the j=th colum of &', heqQ, § &N = [1,...,n].

3

Theorem 3.1. The inequality ax > @ is a consequence of the constraint

v Ahx > ag

(3.1) h
Q x>0
h__'h

*
if and only if there exists a set of 6 €R , Gh >0, heQ , satisfying

(3.2) o> A" and o) <", Vheq®,
*
where Q is the set of those h €Q such that the system Ahx > ap, X >0 is

.

consistent.

Proof. ax 2> ay is a consequence of (3.1) if and only if it is a
*
consequence of each term heQ of (3.1). But according to a classical result
on linear inequalities (see, for instance, Theorem l.4.4 of [37], or

Theorem 22.3 of [36]), this is the case if and only if the conditions stated

*
Remark 3.1.1. If the i-th inequality of a system heQ of (3.1) is

in the theorem hold.

replaced by an equation, the i-th component of eh is to be made unconstrained.
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If the variable x-1 in (3.1) 1s allowed to be unconstrained, the j~th

*
inequality of each system o > OhAh,lch , 18 to be replaced by the corre-
sponding equation in the "if" part of the statement.

With these changes, Theorem 3.1 remains true.

An alternative way of stating (3.2) is
ay 2 sup, Ghag,
heQ
< inf, ehag.
heQ

jeN
(3.3)

%

Since Q* € Q, the if part of the Theorem remains of course
valid if Q* is replaced by Q.

Since (3.3) defines all the valid inequalities for (3.1), every
valid cutting plane for a disjunctive program can be obtained from (3.3)
by choosing suitable multipliers 62 . If we think of (3.1) as being expressed
in terms of the nonbasic variables of a basic optimal solution to the linear
program associated with a DP, then a valid inequality ax > o, cuts off the
optimal linear programming solution (corresponding to xj =0, jeN) if and
only if o > 0; hence o will have to be fixed at a positive value. Inequalities
with o < 0 may still cqt off parts of the lincar. programming feasible set, but
not the optimal solution x = 0.

The special case when each system Ahx > ag » heQ, consists of the
single inequality ahx > a0 (ah a vector, a,3 positive scalar) deserves
special mention. In this case, choosing multipliers Gh = I/aho, heQ, we

obtain the inequality

h
(3.4) I (max a,/a ) x, > 1,
jeJ heq I *no’ %y




I
§

«]ll=-

which (for Q finite) is Owen's cut [36]. It can also be viewed as a

slightly improved version of the intersection cut from the convex set

s = {x]a"<a, hea},

which has the same coefficients as (3.4) except for those (if any) j e¢J such
that a? <0, Yh ¢Q. For the latter, the intersection cut from S has zero
coefficients whereas the corresponding coefficients of (3.4) are negative.
B Whenever all the coefficients of (3.4) are positive (in terms of
intersection cuts, this corresponds to the case when S is bounded), (3.4)
is the strongest inequality implied by the disjunction V (ahx > aho); in
the presence of negative coefficients, however, (3.4) czzgsometimes be
further strengthened,
Due to the generality of the family of inequalities defined by (3.3),

not only can the earlier cuts of the literature be easily recovered by an

appropriate choice of the multipliers Sh (see [ 8] for details),

but putting them in the form (3.3) indicates, by the same token, ways in
which they can be strengthened by appropriate changes in the multipliers.

A significant new feature of the cutting planes defined by (3.3)
consists in the fact that they can have coefficients of different signs.
The classical cutting planes, as well as the early intersection/convexity
cuts and the group theoretic cuttiﬁg planes (including those corresponding to
facets of the corner polyhedron), are all restricted to positive coefficients
(vhen stated in the form >, in term$ of the nonbasic variables of the tableau
from which they were derived). This 1ﬁportant limitation, which tends to
produce degeneracy in dual cutting plané algorithms, can often be overcome

in the case of the cuts obtained from (3;3) by an appropriate choice of multi-
. \

pliers.
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Another important feature of the principle expressed in Theorem 3,1
for generating cutting planes is the fact that in formulating a given integer
program as a disjunctive program, one can take advantage of any particular
structure the problem may have. In section 7 we will illustrate this on
some frequently occurring structures., We finish this section by an example

of a cut for a general mixed integer program.

Example 3.1, Consider the mixed integer program whose constraint

set 1is

x, -\ 2 + .4(-x3) + 1.3(-x4) - JO01(-x.) + .07(-x6)

X
5
‘2 - 09 = .3(“)!3) + .4(-1!4) - .04(- 5) + .1 (-36)

20, J=1,...,6, x, integer, j = 1,...,4.

- 3
This problem is taken from Johnson's paper [35], which also lists six
cutting planes derived from the extreme valid inequalities for the associated

group problem:

75 Xy + .875x4 + .0125x5 + .35 Xg

.778x3 + .444x4 + .40 x

.333x3 + .667x4 + L,033x

v
—

+ .111x

v
[

6
+ .35 X

wmi W
v
(=

50 X, + x,
.444x3 + .333x4 + .055x

.394x3 + .636x4,+ 346x,. + .155x

+ 040 x,. + .25

v
—"

%6
+ .478::6

wn

w
v
—

1.

v
v

6

The first two of these inequalities are the mixed-integer Gomory cuts
derived from the row of xi and Xy respectively. To show how they can be
improved, we first derive them as they are. To do this, for a row of the
form

x, = &, + jEJ ‘11('xj) »

PRT S N EPT " T —_— - I o A £

T

s s ety a




'_'——'—'————_-‘

with x, integer~-constrained for J'Jl’ continuous for ijz, one defines

b
tu = .1.1-[.1.1]’ JeJu{o0}, and ®0 " £100

£ ij';-[Jch_]fm?_ 2,43
%y " f“ -1 ij; -{3e3, | £, <f“}
.13 j‘Jz .

Then every x which satisfies the above equation and the integrality

constraints on Xy ijIU{:l], also satisfies the condition

yy - \'9104' jEJ q’ij('xj) . Yy integer .

For the two equations of the example, the resulting conditions are

3 " 2 - .6(-x3) - .7(-x4) - .01(-::5) + .O7(-x6), ¥, integer

k ' yz - 09 + 07("x3) + .4(-84) - .M(-xs) + 01 (-86), yz 1nteserc
Since each ‘A is integer-constrained, they have to satisfy the
disjunction ‘A <0V vy > 1. Applying the above theorem with multipliers

61 o 1/!1_0 then gives the cut (3.4) which in the two cases 1 = 1,2 is

o6 7 201 207
AT ART IR g 21
and 5
o7 o4 204 1
x, + + x+.9 X 2 1.

93" ST ™S

' These are precisely the first two inequalities of the above list.

Since all cuts discussed here are stated in the form > 1, the smaller
the j-th coefficient, the stronger is the cut in the direction j. We would
thus like to reduce the size of the coefficients as much as possible.

Now suppose that instead of 1 <0V Y1 > 1, we use the disjunction

7121

>0

{71 < 0} v
xl_

which of course is also satisfied by every feasible x.

L, ERA BB -




- Ay

Then, applying Theorem 3.1 with multipliers 5, 5 and 15 for Y1 <o,

2 1land x, 20 respectively, we obtain the cut whose coefficients

are
o {58, BEREER) - o
mr {BED L PFH B} - o
o {220, HRBYED ) - 2
nax {355 SECIRDEGH) - 5,
that is

-3x3 - 3.5x4 + .2x5 + .35x6 2 1.

The sum of coefficients on the left hand side has been reduced from
1.9875 to "5095.
Similarly, for the second cut, if instead of Y, <0 v Y, > 1 we use
the disjunction
Y <0
v {y, 21},
X 2
with multipliers 10, 40 and 10 for Yy <o, X > 0 and Yo 2 1 respectively,

we obtain the cut

-7x3 - 4x4+ .4x5 -~ Xg > 1 .

Here the sum of left hand side coefficients has been reduced from

1.733 to -1116.

"""""""""'!!-"-!!-!-||!
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4, Duality

In this section we state a duality theorem for disjunctive programs,

which generalizes to this class of problems the duality theorem of linear

programming.

Consider the disjunctive program

¢ = min cx
(]

APx > "
(» V .
heQ x>0

where Ah i{s a matrix and bh a vector, ¥ heQ.

We define the dual of (P) to be the problem

W = mAX W
o
w-uhbh_<_0
A h "
(D) heQ uAh <c

L)

The constraint set of (D) requires each uh, heQ', to satisfy the corresponding

bracketed system, and w to satisfy each of them.
Let

x\. - [x‘Ah*?.bh' x > 0}, i-‘h - {JtlAhxzo, x > 0}; -

v, - uh|uhAh <e, o >0}, U = {u“\uhAh <0, o" > 0}.

Further, let

Q* = [hcolxh} o} . @ = (healu, ¢ 0]




We will assume the following

Regularity condition:

(Q* # 0, Q\Q** ¢ 9) = Q*\Q** ¢ @;

i.e., {f (P) is feasible and (D) i{s infeasible, then there exists heQ such that
tho.uh'oo
Theorem 4.1. Assume that (P) and (D) satisfy the regularity condition.
Then exactly one of the following two situations holds.
1. Both problems are feasible; each has an optimal solution and
z =w,
o o

2. One of the problems is infeasible; the other one either is

infeasible or has no finite optimum.

Proof. (1) Assume that both (P) and (D) are feasible. If (P) has no
finite minimum, then there exists he¢Q such that i; #0and x ¢ i£ such

that(c; < 0. But thenU = §, f.e., (D) 18 infeasible; a contradiction.

h
Thus (P) has an optimal solution, say X. Then the inequality cx > z

is a consequence oflthe constraint set of (P); 1.e., x ¢ xh implies cx > zZ s

¥ heQ. But then for all he¢Q*, there exists uth Ayt

h such that u' b > z .
Further, since (D) is feasible, for each heQ\Q* there exists GheUh; and
- - =h. h

since X, = # (for heQ\Q*), there also exists u eU, such that u b > 0,

1
% heQ\Q*. But then, defining

h

0y = & +5°, heQw ,

for )\ sufficiently larée, uh(k)euh, uh(k)bh > z ¥ heQ\Q*.
Hence for all he¢Q, there exist vectors uh satisfying the constraints

of (D) forw = z, . To show that this 18 the maximal value of w, we note

cthat since x is optimal for (P), there exists heQ such that




ex = min{cx|x e Xh] -
But then by linear programming duality,
ex = nnx[uhbhluhcuh}

= nlx{wlw - uhbh <o, uhtUh]
> mnx{wl A (w - uhbh < 0, uhCUh)}
heQ

f.e., w< z and hence the maximum value of w is v, = %,

(11) Assume that at least one of (P) and (D) is infeasible. If (P)

is infeastble, X = @, ¥ heQ; hence for all heQ, there exists ;hcﬁh such
=h, h

" that u'b > 0.

If (D) is infeasible, we are done. Otherwise, for each heQ there
exists ﬁcUh. But then defining

h

oy =8 e g , e,

uh(k)cuh, heQ, for all A > 0, and since ;hbh > 0, ¥ heQ, w can be made

arbitrarily large by increasing A; i.e., (D) has no finite optimum.
Conversely, if (D) is infeasible, then either (P) is infeasible and

we are done, or else, from the regularity conditlon, Q*\Q** # @; and for

heQ*¥\Q** there exists X ¢ xh and x ¢ i; such that cx < 0. But then

x(p) = % + px
is a feasible solution to (P) for any p > 0, and since cx < 0, z can be

made arbitrarily small by increasing u; i.e., (P) has no finite optimum.

Q.E.D.




The above theorem asserts that either situation 1 or situation 2 holds
for (P) and (D) if the regularity condition is satisfied. The following
Corollary shows that the condition i{s not only sufficient but also necessary.

Corollary 4.1,1. If the regularity condition does not hold, then

if (P) is feasible and (D) is infeasible, (P) has a finite minimum (i.e.,

there is a '"duality gap").

Proof. Let (P) be feasible, (D) infeasible, and Q¥\Q** = P, {.e.,
for every heQ*, let U, # . Then for each heqx, min{cx|x ¢ xh] is finite,
hence (P) has a finite minimum. Q.E.D.

Remark. The theorem remains true if some of the variables of (P)

(of (D)] are unconstrained, and the corresponding constraints of (D) [of (P)]
are equalities,

The regularity condition can be expected to hold in all but some
rather peculiar situations. In linear programming duality, the case when
both the primal and the dual pfoblem is infeasible only occurs for problems
whose coefficient matrix A has the rather special property that there exists
x # 0, u # 0, satisfying the homogeneous system

Ax >0 , x>0 : .
VA0 , u>0
In this context, our regularity condition requires that, if the primal problem
is feasible and the dual'is infeasible, then at least one of the matrices
Ah whose associated sets Uh are infeasible, should not have the above
- mentioned special property.

Though most problems satisfy this requirement, nevertheless there

are situations when thé regularity condition breaks down, as illustrated by

the following example.
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Consider the disjunctive program
min -xl-2x2
-x #x, 20 X 4%, > 0
(P) X)X, > =2 \/ x,"%, >4
X)9Xy 2 0 Xys%Xy 2 0
and its dual
max w
v +2ul <0
u, <
) (I ¢
-uy- o, <-1
1 1
(D) u- oy, < -2
2,2
-u1+u25 1
ui-ug < -2
u‘;_.?_o, {=1,2;k=1,2

The primal problem (P) has an optimal solution X = (0,2), with cx = <4
whereas the dual problem (D) is infeasible. This is due to the fact that

Q\Q** = {2} and X, =9, U, =9, i.e., the regularity condition is violated.

Here
2, 2
-xl+x2 >0 : -u1+u2 <-1
X, =(x eR U, =(ueR
2 + ¢ 2 + 2 2
X"%y 21 u -u, < -2
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5. The Convex Hull of a Disjunctive Set

Having described the family of all valid inequalities, one is of

course interested in identifying the strongest ones among the latter, i.e.,

the facets of the convex hull of feasible points of a disjunctive program.

If we denote the feasible set of a DP by

al v Ahx_za:)l !
F = X €6R e > 2
Rl x>0 j

then for a given scalar oy the family of inequalities ogx > @ satisifed
by all xe¢F, i.e., the family of valid inequalities for the DP, is obviously

isomorphic to the family of vectors aerié where

#
l?(cro)

o:o)’
= {yerR"|yx >y, VxeF} ,

i

is a valid inequality if and only if aeF(a y*
0

in the sense that ax > C

In view of its relationship with ordinary polar sets, we call

i

F(ct ) the reverse polar of F. Indeed, the ordinary polar set of F is
0

F° = {yeRnIyxs 1, YeF] ,

and if we denote by Fc(’a ) the polar of F scaled by @y (i.e., the set
0

obtained by replacing 1 with o, in F), then F# R .
i (Q'O) ('ao)

0
The size (as opposed to the sign) of @, is of no interest here. There-

fore we will distinguish only between the 3 cases o, > 0 (or ay = L)

0

ag = 0 and @ <0 (or ag = -1). (When the sign of o, makes no difference

or is clear from the context, we will simply write F#.) For o <0, as

mentioned above, Fiz is (the negative of) an ordinary polar set, whose

aq)
0
properties are described in the literature. The most interesting case for
us, however, is ag > 1, since this is the only case when the inequality
ax 2 o cuts off the point x = 0, This is why we need the concept of

reverse polars.,




«2]=

For an arbitrary set s cR™ we will denote by ¢1 S, conv S, cone S,
int S and dim S, the closure, the convex hull, the conical hull, the interior
and the dimension of S, respectively. For a polyhedral set ScR" we will
denote by vert S and dir S the set of vertices (extreme points) and the set
of extreme direction vectors of S, respectively. For definitions and back-
ground material on these and related concepts (including ordinary polar sets),
the reader is referred tq [37]) or [38] (see also [28]).

In [10] we showed that while some of the basic properties of polar sets
carry over to reverse polars, others can only be recovered in a modified form.
% S#; (b) S&T = S# ;‘T#;

ﬂT#, properties which follow from the definitions. In the

In the first category we mention (a) (AS )# =

(e) (s UT)# =st

second one we state a few theorems, which are from [10] (see also [1]).

< 0, then S# # ¢ and

Theorem 5.1. ' (1) If oy

0 ¢ int cl conv S <m=> S# is bounded

(ii) If o, > 0, then

0

#

DOeclconvsS <=> § = @ <=> S#

is bounded.

Proof. (i) follows from the corresponding property of the ordinary

polar s® of § and the fact that S# = -89 ye
(o) (o)

(ii) For o, > O, if S# # P there exists ) ¢R" such that xy >«

0 0’
Vxecl conv S. But Oc vy <cx0, hence O0¢cl conv S. Thus, 1f Oecl conv S,

#

then S# = f; and hence S" is bounded. Conversely, if O0g¢cl conv S, there

exists a hyperplane ax = % separating 0 from cl conv S, i.e., such that (°'0>0 and)

ax > oy Vx e cl conv S; which implies aes#, 1.0, S# # P. It also implies

Aa e S#, VA>1, i.e., S# is unbounded. ||

From this point on, we restrict our attention to sets S whose convex hull is

polyhedral and pointed. For the disjunctive set F, this condition is satisfied

“—___—____- :
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if Q is finite. Most of the results carry over to the general case, but

proofs are simpler with the above assumptions,
#

Theorem 5.2. 1 ¢l conv S is polyhedral, so is S".

Proof. Let u .,uP and v ,V_ be the vertices and extreme directior

10 10"

vectors, respectively, of cl conv S. Then for every yeS there exist scalars
p

)\i :.0: i = 1)'~-)Pa P‘j 20’ j = 1,---,(], with X >\1 = 1’ such that

i=1

p q
y= Sk, + v .,
i=) ** j=1 0

and it can casily be seen that for arbitrary x, xy > «po ¥ yeS, if and only

if XUy g i = Lo Py and xvj 2105 9 = Ly...yq9. Thus

fie., §° 45 polyhedral.||
The next result describes the crucial involutory property of polar and
reverse polar sets.

Theorem 5.3,  Assume S# # f. ‘Then

. o S B

V
(=

cl conv S + ¢l cone S it ao‘
S##

= cl cone S if @, 0
cl conv (SU{0}) if @ < 105

M _

Proof. = {x eR"

| xy > ags Vy es’)

Xy > o for all y s.t.

= X eR uiy

v

ao, iél,-..,? .

v

Viy 0, igl,.-o,q
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But xy > oy is a consequence of the system uy Z g { = 1,...,p and
viy >0,1i=1,...,q9 (consistent, since S# # §), if and only if there exists

a set of 01 >0,1i=1,...,pP, o4 >0,1i=1,...,q9, such that

P q
(5.1)¢ x = 5 0u + Eov s
g=1 ii {=1 ii
with
5 6
0o, 2 «
g L0 0
# i 53

Since S is polyhedral, so is S . Thus S  is the closed set of points

x € R" of the form (5.1) with 8 20,1=1,...,p 0, >0, 1 =1,...,q, and

=1 if @ >0
: 6
z = >0 ifa,=0
i=1 i 0

<1 1fa0<0.

But these are precisely the expressions for the three sets claimed in

: the theorem to be equal to S## in the respective cases. ||
Corollary 5.3.1. ¢l conv § = Sff)IWSifl).
Proof. Follows immediately from the proof of Theorem 5.3, where
P .
X € Sﬁf)f\sﬁfl) corresponds to I ei = 1.|

i=1
Example 5.1. Consider the disjunctive set

2 )

v

vy
n
H]
®
-~
N
%
—
v v
o o
—

=1 and ¢, =~1 are

illustrated in Fig. 5.1(a). 1Its reverse polars for o 0

0

the sets
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N
<
=
v
-

=
N
N
<
N
v
—
N

F(l) - ch = yeR

<
—
v
p—

>
v
-y

and

N
<
—
v
!
—

Sk
N
N
<
N
v
!
p—
N
N
L]
—
v
i
—

<
-
v
]
-

>
v
]
P

shown in Fig. 5.1(b) and (c).
Finally, the sets F## corresponding to QO = 1 and Q, = -1 (shown in

Fig. 5.2(a), (b)) are

x1+x221 Xy =Xy 2 -2
i 2 #H 2 ;
F(l) X€R Xy 20, , F(-l) = xeR Xy >0 . ,
X, 20 | X, >0 ;

and their intersection (shown in Fig. 5.2(e)) is

--xl-'-x2 > -2\
X +tx. > 1
Fizf) nFﬁfl) = clconvF = xc-:R2 1 ‘ > *
X >0
X, >0
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i# #
0
(0,2) F Fy / Fl-1)
(0,1) % /
2 (1,1) (0,0) /
(o]
0,0) ' ” /
e G 0.0 -1-5
(a) ®) ©)
Fig. 5.1
{HE {HE iHE bl
F(l) (0,2) F(-—l) 0,2) F(l) ﬂF(_l) = ¢l conv F
(0;1) (0,1)
0,0 & ////' i |
0,0 (1,0 (0,0 (2,0) 0.9 1,0y (2,0)
(a) ) ()
Fig. 5.2

The next theorem is needed to prove some other essential properties of

reverse polars.

Theorem 5.4. S### = S#.

Proof. 1If @, < 0, this follows from the corresponding property of

ordinary polars. If o, > 0 and O€cl conv S, then S# =0, S## = Rn, and

0
S### =f = S#. Finally, if ag > 0 and O¢cl conv S, then
S### = cl (conv S + cone S)# (from Theorem 5,3)

= {yeRr"|xy> oy» Vxecl (conv S + cone S)}

= [yeRnlxy_Zao, VxeS} = st. |




26~

The above results can be used to characterize the facets of cl conv S.

To simplify the exposition, we will assume that S is a full-dimensional

pointed polyhedron, which implies that S## is also full-dimensional. For the

general case the reader is referred to [10].

We recall that an inequality mix > T defines a facet of a convex set C

if mx > no, VxeC, and nx = 110 for exactly d affinely independent points x

of C, where d = dim C. The facet of C defined by nx > na is then

[xeC Inx = no}; but as customary in the literature, for the sake of brevity

we call mx > n_ itself a facet.

0
We proceed in two steps, the first of which concerns the facets of S##.

Theorem5.5. Let dim S = n, and Qg # 0. Then ox > o, is a facet of

0
#

S## if and only if ¢ # 0 is a vertex of S .

#

Proof. From Theorem 5.4, o ¢R™ is a vertex of S" if and only if

uy > @y Yu ¢ vert S##
1 a€S = yeRn #
vy >0, Vvedir S

and ¢ satisfies with equality a subset of rank n of the system defining S#.

Further, o # 0 if and only if this subset of inequalities is not homogeneous

(i.e., at least one right hand side coefficient is o # 0).

On the other hand, ox > op is a facet of S## if and only if (i) ox > @
chs##, i.e., es#; and (ii) ax = @ for exactly n affinely independent
4
points of Sﬁ#. But (ii) holds if and only if qu = . for r vertices u of

0

S##, and o v = 0 for s extreme direction vectors v of S##, with r > 1

(since o # 0) and r+s > n, such that the system of these equations is of

rank n.




Thus the two sets of conditions (for ax 2> ag to be a facet of S## and

for o to be a vertex of S#) are identical.

By arguments similar to the above proof, one shows that ox 2> 0 is a

facet of S## if and only if o is an extreme direction vector of S#. Unlike

for o # 0, the homogeneous inequality ox > 0 is a facet of Sﬁf) if and only
if it is also a facet of sﬁfl) [of Sfﬁ)]’ due to the fact that every extreme
direction vector of Sﬁl) is also an extreme direction vector of Sﬁ-l)

#
[of S(O)]’ and vice-versa.

Theorem 5.6. Let dim S = n, and @y # 0. Then ax > a, is a facet of
cl conv S if and only if it is a facet of S## 3°

(0’0.
Proof. (i) If oy > 0, the halfspace gx > o contains cl conv S if and

only if it contains cl(conv S + cone S). 1If o < 0, the halfspace ogx > o
contains cl conv S if and only if it contains cl conv (SLJ{O}). From Theorem 4.3,

in both cases ox > @ is a supporting halfspace for cl conv S if and only

if it is a supporting halfspace for Stﬁ y*
0
E
(ii) Next we show that
{xecl convS|cyx =a0} = {xesiéﬁo)lax=ao} .

1

The relation ¢ follows frpm cl conv S € S (Theorem 5.3), To show the

o
0

converse, assume it to be false, and let x ¢ Sﬁﬁ )

0

From Theorem 5.3, X = A\u for some uecl conv S, and A > 1 if o >0,

\cl conv S satisfy ox = -

0<)<1if a < 0. In each case, ox = o implies qu = (1/A) ax < @ for

some u € cl conv SG;S## , contrary to the assumption that gx > o ,¥ x € S## .H
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By an argument similar to the above proof one can show that if o¢x > 0

is a facet of cl conv S, then it is a facet of Sﬁﬁ ) for both o = 1 and

0
agy = -1. The converse, however, is not true, i.,e., ax > 0 can be a facet
of both S## i ## iHE

(1) and S(-l)’ without being a facet of S(l)f]S(_l).

We are now ready to characterize the facets of the convex hull of the

disjunctive set
h h
= v A'x a,

F = x €eR 3
heQ % 0

v

v

where Q is assumed to be finite, and F to be full-dimensional (for the

general case see [10]).

Theorem 5.7. oX > @y with @ # 0, is a facet of cl conv F if and

only if o # 0 is a vertex of the polyhedron

vy > ™", neQ”
Fiéd g yeR" | for some R >0, h cQ* s
! satisfying ehag 2

*
where Q 1is the set of those heQ for which the system Ahx‘z ag, x>0, is

consistent.

Proof. From Theorem 3.1, the set Fﬁa ) = {yeRn |xy 2 oy Vx ¢F} is of
0
the form claimed above. The rest is a direct application of Theorems 5.5

and 5.6. || J

As for the case oy = 0, from the above comments it follows that if

ax >0 is a facet of cl conv F, then o # 0 is an extreme direction vector ‘ ]
of Fta ) for all oge The converse is not true, but if o ¥ 0 18 an extreme
0

i direction vector of th ) for some @p (hence for all ao), then ¢ x > 0 is
0
either a facet of cl conv F, or the intersection of two facets, alx > 05 and

2 2 1

ax_>_ao, with o

+o? = o and aé = -ag # 0 (see [10] for the details).
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Since the facets of cl conv F are vertices (in the nonhomogeneous case)
or extreme direction vectors (in the homogeneous case) of the convex poly-
hedron F#, they can be found by maximizing or minimizing some properly chosen

linear function on F#, i.e., by solving a linear program of the form

min gy
¥ y - ehAh > 0
P.(8,a,) *
. 9 eha% A heQ
o >0 |
or its dual
h
max X _ «.§
h
* z*g = g
P, (85ay) heQ
h_h h_h *
] aogo-Ag < 0 heQ
€ 20,8 20
From Theorem 5.1, if o. < O then F# #0, i.e., P*(g,a ) is always
o = (¢p) " 1'8:9g
*
feasible; whereas if a > 0, then Pl(g,ao) is feasible if and only if

O¢écl conv F. This latter condition expresses the obvious fact that an
inequality which cuts off the origin can only be derived from a disjunction
which itself cuts off the origin.

Two problems arise in comnection with the use of the above linear
programs to generate facets of cl conv F. The first one is that sometimes
only Q is known, but Q* is not. This can be taken care of by working with

Q rather than Q*. Let Pk(g,ao) denote the problem obtained by replacing Q*
with Q in P:(g,ao), k = 1,2, It was shown in [10], that if Pz(g,ao) has an

optimal solution € such that

@0, P40 = ned* ,

e |
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S GIVEN THE OFTION OF FURCHASING ANY ONE OF TWO STOCKS A AND R
WITH THE FOLLOWING RISK-RETURN CHARACTERISTICS, JOHN SAYS
HE WILL EUY STOUK A, FROM THIS DATA 1 CaN CONCLUDE THATS

EXFECTED RETURN RISK
STOCK A 5 8%
STOCK R 9%

i

N N

A.  JOMN IS8 A RISK LOVER

RBe JOHN I8 RISK ADVERSE. J
e JOHN IS NEUTRAL TOWARDES RISK

e JOHN I8 TITRRATIONAL

o NONE OF THE AROVE.

4.NOW SUFFOSE THAT JOHN HAS THE CHOICE OF ANY ONE OF THREE
STOCKS AyB AND T. A AND B HAVE THE SAME RISK-RETURN
CHARACTERISTICS A IN QUESTION 3. STOCK © HAS
EXFECTED RETURN OF $%Z AND RISK OF 9%Z. WHICH STOCK WILL JOHN CHQOQGET

A, STOCK A
E. STOCK E

Ce STOCK ©

. UNDETERMINED WITH GIVEN INFORMATION

E, HE WOULD BE INDIFFERENT RETWEEN STOCKS E AND C
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then every optimal solution of Pl(g,ao) is an optimal solution of PI(g,ao).
Thus, one can start by solving Pz(g,ao). If the above condition is violated
for some h cQ‘\Q*, then h can be removed from Q and Pz(g,ob) solved for Q
redefined in this way. When necessary, this procedure can be repeated.

The second problem is that, since the facets of cl conv F of primary

interest are the nonhomogeneous ones (in particular those with . > 0, since

0
they cut off the origin), one would like to identify the class of vectors g ;
for which Pt(g,ao) has a finite minimum. It was shown in [10], that P:(g,ao)
has a finite minimum if and only if Ag €ecl conv F for some A > 0; and that,
should g satisfy this condition, o x 2> o is a facet of cl conv F (where F

is again assumed full-dimensional) if and only if o = 5 for every optimal

solution (;,5) to P;(g,ao).

As a result of these characterizations, facets of the comvex hull of

the feasible set F can Ee computed by solving the linear program Pl(g,ao) or
its dual. If the disjunction defining F has many terms, like in the case
where F comes from the disjunctive programming formulation of a 0-1 program
with a sizeable number of 0-1 conditions, Pl(g,ao) is too large to be worth
solving. If, however, F is made to correspond to a relaxation of the original
zero-one program, involving zero-one conditions f;r only a few well chosen
variables, then Pl(g,ao) or its dual is practically solvable and provides the
strongest possible cuts obtainable from those particular zero-one conditions.
On the other hand, since the constraint set of P,(g,a,) consists of Q]
more or less loosely connected subsystems, one is tempted to try to approximate

an optimal solution to Pz(g,ao) — and thereby to Pl(g,ao) — by solving the

subsystems independently. Early computational experience indicates that
these approximations are quite good.

We now give a numerical example for a facet calculation.
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Example 5.2. Find all those facets of cl conv F which cut off the

origin (i.e., all facets of the formax > 1), where l-‘<:R2 is the disjunctive

set
F o F VY, VE, VT, ,
with
F, = {x|-x;+2x, 26, 0<x, <1, x, >0}
F, = f{x|&x; +2x, 211, 1<x <2.5, x, >0}
Fg = {xl-x1+ X, 2 -2, 2.5 <x; < 4, x, > 0}
7, = {x| x, + %, 26, 4<x, <6, x, >0}

(see Fig. 5.3).
After removing some redundant constraints, F can be restated as the
set of those xcR_f_ satisfying
l;x1 + 2x2 > 11
{-x, + 2x, > 6} V vV {x, +x,>6]}
1 2 = 1 2=
X + Xy > -2
and the corresponding problem Pl(g,l) is
min g,y + 859, |
- |
%
¥y + 9;' >0 I
1
Yy - 291 >0
2 - 49i+ 922, >0
Yy - 2ei . eg > 0
b - ei > 0
Y - Oi > 0
1
691 s 1
1167 - 263 > 1
602 > 1 |
1 2 & .3
©15 855 830 6,20
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Solving this linear program for g = (1,1), yields the optimal points

1 111 ) {0 (DN (0 10 8 |
(y;0) = ('5’% ;'61"'5’3"6_) » and (y;0) = (3:'5 ;_6-’3’3’§> » which have the same

y=-component : (%,%). These points are optimal (and the associated y is

unique) for all g > 0 such that 8, < ng. For g = 532, in addition to the

above points, which are still optimal, the points (y;8) =<l Z.121 1)

6°6 °6°9°18°6
and (y;6) = (%,% ;3%5%,%%,%), which again have the same y-component
y = (%,%), also become optimal; and they are the only optimal solutions for
all g > 0 such that g > 532.

We have thus found that the convex hull of F has two facets which cut

off the origin, corresponding to the two vertices y1 = (%,%) and y2 = /%,%>
‘of F#(l):
sAt3n 2 1
sntEx 21
X
35 7
3 t7 X2 >
(0'1)'
(0".9‘ + + Pt S G-
(0,0 1,0 (250 [«0) ¢, :

Fig. 5.3
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6. Facial Disjunctive Programs

In this section we discuss the following problem [10]. Given a disjunctive
program in the conjunctive normal form (2.2), is it possible o generate the
convex hull of feasible points by imposing the disjunctions j €S one by one, i
at each step calculating a 'partial" convex hull, i.e., the convex hull of the
set defined by the inequalities generated earlier, plus one of the disjunctions?

For instance, in the case of an integer program, is it possible to ‘
generate the convex hull of feasible points by first producing all the facets
of the convex hull of points satisfying the linear inequalities, plus the
integrality condition on, say, X3 then adding all these facet-inequalities
‘to the constraint set and generating the facets of the convex hull of points
satisfying this amended set of inequalities, plus the integrality condition on
X,; etc. The question has obvious practical importance, since calculating
facets of the convex hull of points satisfying one disjunction is a consider-
ably eésier task, as shown in the previous section, than calculating facets
of the convex hull of the full disjunctive set.

The answer to the above question is negative in general, but positive i
for a very important class of disjunctive programs, which we term facial.

The class includes (pure or mixed) 0-1 programs.

The fact that in the general case the above procedure does not produce
the convex hull of the feasible points can be illustrated on the following

2-variable problem.

Example 6.1. Given the set

2
F0=[xeR|-2x1+27¢2§_1,2x1-2x <1, 0<x

2

find F = cl conv (F,N{x le,xz integer]}).




Denoting
B, = cl conv (Foﬂ[x | Xy integer}), By = cl conv (Flﬂ{x | X, integer}),

the question is whether F2 = F. As shown in Fig. 6.1, the answer is no,

since
2x, - x, >0
1 2 -X +x2=0
-2x1+3x220 |
F, =4 X , while F = (x| 0<x, <2 - |
2 - ) == |
-2x1+ x22-2 |
2x1-3x22-2

1f the order in which the integrality constraints are imposed is
‘reversed, the outcome remains the same.
7 F = o@wmr(@'n{x]x, iuicye})

Fo
3 (’ul) (2,]2, 1 (2.2)

( e @
& \UH

A

(6, = l}' (z,1) )]
|!\’i|/

.;li/

1(2,1)

(¢,0) (@) aa'))(’ ooy (5] (2,0)
£ = Leonwe (E0ixl% iwlegecd) Feelcornr (ENLXI X, Ko Cttgec])
(Y (2,2
(1) 00 ' - 12,1)
(0 (0,0) ) (2,0)
Fig. 6.1




Consider a disjunctive program stated in the conjunctive normal form
(2.2), and denote

Fo= {xer" |Ax >ay, x>0} .

The disjunctive program (and its constraint set) is called facial if
every inequality dix > dio that appears in a disjunction of (2.2), defines

a face of FO; i,e., if for all i er, jeS, the set

i
Foﬂ[xld x > d:!O}

is a face of Fo. (A face of a polyhedron P is the intersection of P with
some of its boundary planes.)

The class of disjunctive programs that have the facial property includes
the most important cases of disjunctive programming, like the 0-1 programming
(pure or mixed), nonconvex quadratic programming, separable programming, the
linear complementarity ﬁroblem, etc.; but not the general integer programming
probleﬁ, as illustrated above. 1In all the above mentioned cases the
inequalities dix > diO of each disjunction actually define facets, i.e.,

(d - 1)-dimensional faces of FO’ where d is the dimension of Fo.

Another property that we need is the boundedness of FO. Since this can

always be achieved, if necessary, by regulariziné FO’ its assumption does

not represent a practical limitation.

Theorem 6.1. Let the constraint set of a DP be represented as

F o= {xeFy| v @x24d,), jes)
icQj

where

Fo = {x-cRnleZao, x >0} .

For an arbitrary ordering of S, define recursively




5. ty P a1 i
Fj = conv [1; (Fj_ln{xld ‘f-i‘io 20 @ 4 bge -‘sl" !
b

1f F is facial and I-‘o is bounded, cten

F'S] = conv V' ., i

The proof of this theorem [10’ uses the followini awxi' : v re.ul:

Lemma 6.1.1. Let Pl”"’Pr be a finite set .7 polytopes (bounded
r
polyhedra), and P = U Ph .
h=1

Let H' = {x ¢R" ‘dix < dio} be an arhitriry halispa ¢, =~
H = {xeR" |dix = dio} its defining hyperpléne.
If P ¢ H+, then

HNconv P = comv (1.1°) .

Proof. Let HN conv P ¥ § (otherwise the Lemma holds trivially).

Clearly, (HNP) ¢ (HNconv P), and therefore
l conv (HNP) < conv (HNconv P) = Hlconv P .

To prove =2, let u]_,...,up be the vertices of all the polytopes

Ph’ h=1,.,..,r. Obviously, p is finite, conv P is closed, and
r : ‘
vert conv P ¢ ( U vert Ph). Then
h=1
1 P
xcHﬂconvP:dx=dioandx~ z )‘k“k ’
k=1
with

p
z El’ A 20, k=1,-on,p 0
kal*k k

Further, PCH+ implies v:li‘uk < dio’ k=1,...,p. We claim that in the above
r expression for x, if )‘k > 0 then di"‘k = diO' To show this, we assume there

exist A, > 0 such that diuk <d;4 Then




G

. =37~

i

- P
@x = AT A < dig( T A

k=1

= b0

a contradiction. Hence :: is the convex combination of points u ¢HNP, or

x sconv (HNP). ||

fnother relation to be used in the proof of the theorem, is the fact
that for moitrary Sl, schn,

£

£6.); ~snv (conv SIUconv 82) = conv (SIUSZ) .

Proof o1 Theorem 6.1. For j = 1, the statement is true from the

definitions and the obvious relation

v @N{x|dx2d, 0D = (xeFy| v @x>a,0)) .

1eQ, 1eQ,

To prove the theorem by induction on j, suppose the statement is true

for j = 1,...,k. Then

Fiqq = conv [ v (ka'I{x | dix > dio})] (by definition)
i.erH

= conv [ Vv (x|ax>a, 3 nconv {xer | v @'k >4, §=1,...,kD
: 2 40 Fol, 2 940
€Qer1 - €Q
(from the assumption)

= conv [ V conv ({x |dix > dio} n {chol v (dix 24d;0), 3= Lyeeask}d]
1ch+1 L ier
(from Lemma 6,1.1)

= conv [( V {x |d1x2dm}) n {chol v (dixzdm), § = Lyesek}]
1642 1eQ,

(from (6.1))

3= 1,00k},

= conv [xeFol v (dixzd
1&1

107

e ——————ll
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i.e., the statement is also true for j = k + 1. ||

Theorem 6.1 implies that for a bounded facial disjunctive program with
feasible set F, the convex hull of F can be generated in |S| stages, (where
S is as in (2.2)), by generating at each stage a 'partial’ convex hull,
namely the convex hull of a disjunctive program with only one disjunction.

In terms of a 0-1 program, for instance, the above result means that

the problem
min {cx |Ax >b, 0 <x<e, x;=0or 1, j= Lanssstl] 5

where e = (1,...,1), is equivalent to (has the same convex hull of its

feasible points, as)

1
(6.2) min {cx |Ax > b, 0<x<e, a X 2 agq, L6}, x, =0orl, j=2,..,n]

where aix > g 1.¢ul, are the facets of

F, = conv {x|Ax>b, 0<x<e, x; =0or1}.

1

In other words, x, is guaranteed to be integer-valued in a solution of (6.2)
although the condition x; = 0 or 1 is not present among the constraints of

(6.2). A 0-1 program in n variables can thus be replaced by one in n-1

variables at the cost of introducing new linear inequalities. The inequalities
themselves are not expensive to generate, since the disjunction that gives
rise to them (x1 =0V X, = 1) has only two terms. The difficulty lies rather
in the number of facets that one would have to generate, were one to use this
approach for solving 0-1 programs, However, by using some information as to
which inequalities (facets of a 'partial" convex hull) are likely to be '
binding at the optimum, one might be able to make the above approach efficient
by generating only a few facets of the "partial" convex hull at each iteration.
This question requires further investigation. For additional results on

facial disjunctive programs see [33], [34].

hl-""""'''''"'"'-"-"------—--—---—-..--.....r - e
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7. Disjunctive Programs with

Explicit Integrality Constraints

The theory reviewed in the previous sections derives cutting planes
from disjunctions. In this context, 0-~1 or integrality conditions are viewed
as disjunctions, and the disjunction to be used for deriving a cut usually
applies to the basic variables.,

In this section we discuss a principle for strengthening cutting planes
derived from disjunctions in the case when, besides the disjunction which

applies to the basic variables, there are also integrality constraints on

some of the nonbasic variables. In [14] we first proved this principle for

arbitrary cuts, by using subadditive functions, then applied it to cuts

from disjunctions. Here we prove the principle directly for the latter case,

without recourse to concepts outside the framework of disjunctive programming.
Let a DP be stated in the disjunctive normal form (2.1), and assume

in addition that some components of x are integer-constrained. In order for

the principle that we are going to discuss to be applicable, it is necessary

that each Ahx,ler, has a lower bound, say bg. With these additional

features, and denoting by J the index set for the components of x (|J| = n),

the constraint set of the DP can be stated as

(7.1) A'x >}, 1eq
x>0,
(7.2) v ' > af)
iQ
and
(7.3) xj integer, ijICJ ’
where
i i
(7.4) ay >by, 16Q.
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Let Q = {1,...,q}, and let a1 stand for the j-th column of Ai, jeJ,

b
ie¢qQ.

Theorem 7.1. [14] Define

(7.5) M= {mchI Zm >0, m integer, 1eq} .

ieQ :

Then every x ¢ R® that satisfies (7.1), (7.2), (7.3), also satisfies the

inequality
(7.6) L o,x,2a
gy d A7 R
where
i, 1 i i
inf max 6 [a, + m,(a3-b ] jeJ
, sgieg 4 19 0l b
7.7 @y =
i1
mxeaj ,1.:.)\.I]_=J2
ieQ
and
i1
(7.8) ao-mineao.

1eQ

To prove this theorem we will use the following auxiliary result.

Lemma 7.1. Let mjcM, m:l = (mij)’ jeJl. Then for every x ¢ R®

satisfying (7.3), either

(7.9) I mx, =0, VieQ
3e3) 1373
or
(7.10) V(EImx >1)
1eq ye3, 33 ;
holds.

|
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Proof. If the statement is false, there exists x satisfying (7.3) and
such that

T fmx, <0,
1eq je5, 33

On the other hand, from x > 0 and the definition of M,

a contradiction.

Proof of Theorem 7.1. We first show that every x which satisfies (7.1),

(7.2) and (7.3),. also satisfies

’ i i i i : i
(7.29 12;[1331[31 + mij(ao bo)]xJ + j:}zajxj 2 aOJ

for any set of m, ¢M, } ch. To see this, write (6.2') as

3

i

(7.2") vig a*x, + (az-bo)

1
1eq Je3 13 My L

i
A
From Lemma 7.1, either (7.9) or (7.10) holds for every x satisfying (7.3).
1f (7.9) holds, then (7.2%) is the same as (7.25 which holds by assumption.
If (7.10) holds, there exists k ¢Q such that I mijj =1+ A for some A > 0.

jeJ
But then the k-th term of (7.2”’) becomes -

k
L acx
jeJ 3

> by - A -b%)
which is satisfied since A(a:-bg) > 0 and x satisfies (7.1). This proves
that every feasible x satisfies (7.2°).

Applying to (7.2’) Theorem 3.1 then produces the cut (7.6) with

coefficients defined by (7.7), (7.8). Taking the infinum over M is justified




by the fact that (7.6) is valid with a, as in (7.8), o, as in (7.7) for

3
ijz, and

1. & > 4 i
o, = max 6 [a, + m, ,(a. ~b_)]
h| 16Q ] 130 0

for jeJl, for arbitrary m_ e M. I

]
Corollary 7.1.1. [14]. Let the vectors oi, ieQ, satisfy

b (R i i1
y A | -b = .
(7.11) o (ao 0) I, © ay > 0

Then every x ¢R" that satisfies (7.1), (7.2) and (7.3), also satisfies

(1.6) E gz, 21,
jeJ i
where
i1
ga, +m
min max ——*1——1——1 - _1cJ1
' meM ieQ o ay
(7-7 ) B b .
b ciai
:ﬁg At jeJ,
0

Proof. Given any o', i¢Q, satisfying (7.11), if we apply Theorem 7.1
by setting 8 = (ci/clag), i€Q, in (7.7) and (7.8), we obtain the cut (7.6'),

with B, defined by (7.7%), ded. |

Note that the cut~strengthening procedure of Theorem 7.1 requires, in
order to be applicable, the existence of lower bounds on each component of
Aix, ¥i ¢Q. This is a genuine restriction, but one that is satisfied in many

practical instances, Thus, if x is the vector of nonbasic variables associated




A X

with a given basis, assuming that Aix is bounded below for each i e€Q
amounts to assuming that the basic variables are bounded below and/or
above. In the case of a 0-1 program, for instance, such bounds not only

exist but are quite tight.

Example 7.1. Consider again the mixed-integer program of example 3.1
(taken from [35]), and assume this time that Xy and x, are 0-1 variables
rather than just integer constrained, i.e., let the constraint set of the

problem be given by

X, = 2+ .4(-x3) + 1.3(-x4) - .01(-x5) + .07(-x6)
X, = .9 - .3(-x3) +  J4(- 4) - .04(-x5) + .1 (-x6)
xj 20, §=1,...,6; xj =0eorl, jJ=1,2; xj integer, j = 3,4.

This change does not affect the Gomory cuts or the cuts obtainable
from extreme valid inequalities for the group problem, which remain the

came as listed in example 3.1.

Now let us derive a c¢ut, strengthened by the above procedure, from

the disjunction

v

Xy 0 "
v o o{x, 21} .
- >0

Since X5 "Xy and x, are bounded below by 0, -1 and O respectively, we

have

-02 )-w 2
7 2
= 5 a2, = .1, bo = -9

"01

(=
(=2
onN

.9

Applying Corollary 7.1.1, we choose ol = (4,1), 02 = 1, which is easily

seen to satisfy (7.11). Since Q has only 2 elements, the set M of (7.5).




becomes

M o= (&= (@,m) |m, +m, >0; m, m, integer}
and, since at the optimum we may assume equality,

M = {m= (ml,-ml) Iml integer]} .

The coefficients defined by (7.7’) then become

4X(--4)+1X('.3)+m1 1X.3—m
4x(=e2)+1x.9 * 1Ix.l

By = min max{ 1}=-7 (vith m, = 1)

my integer

4X(-1.3)+1X.4+m1 1)(('-4)"1111 5
\ = -24 (with m

4X('.2)+1X.9 : 1Xol J

. min max{ = 2)

my integer 1

- 4x.01+1x(-.04) 11X
BS M 4x(~e2)+1x.9 * 1X.

g

.04 )
1

J‘=.4

bx(=.00)+1x.1 1X("-1)} D
Gy (me2)*Ix.9 * 1x.l )

:

Be

and the cut is

-7x3 --24x4 + .4x5 - Xg 2 15

which has a smaller coefficient for X, (and hence is stronger) than the
cut derived in example 3,1.

In the above example, the integers m, were chosen by inspection.
Derivation of an optimal set of m, requires the solution of a special type

of optimization problem. Two efficient algorithms are available [14] for




kS

doing this when the multipliers oi are fixed. Overall optimization would

of course require the simultaneous choice of the o1 and the m,, but a good

i’
method for doing that is not yet available.

The following algorithm, which is one of the two procedures given in
[14], works with fixed 01, i eQ. It first finds optimal noninteger values |

for the m,, 1 ¢Q, and rounds them down to produce an initial set of integer

i’
vaiues, The optimal integer values, and the corresponding value of Bj’
are then found by applying an iterative step k times, where k < |Q| -1,
|Q| being the number of terms in the disjunction from which the cut is

derived.

Algorithm for calculating gj, jeJd,, of (7.7

Denote
ii i4i.-1
{1.1%) Gy O 8y, Ay = (0hap s
and
(7.13) Y= £ o/ E 11_ g
1¢Q ieQq M
Calculate
*
(7.14) L m et eg , 1eq”,

* *
set m; = [mil, ieQ, define k = - % [mi], and apply k times the following
ieQ

Iterative Step. Find

)\s(aB +m + 1) = min Ai(ai + m, + 1)
ieQ
and set
m, -m, + 1, mg-m o, 1eQ\ {8} .
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This algorithm was shown in [14] to find an optimal set of m (and |
*
the associated value of SJ) in k steps, where k = - L [mi] < |Q| =]
ieQ
Example 7.2. Consider the integer program with the constraint set

s 2 5
% = gre ) rg Rty =)

2 (%) + 5 (x) - § (=x))

]
n
N
+

o

[} [N

Xy = g (X G (xg) - g ()

[}
[
+
-\ F 3

5 1
('xs) + 6 ('x6) e g (-x7)
X, + x, + x, + X, 2 1

=0or 1, j=1,...,4; > 0 integer, j = 5,6,7.

3

We wish to generate a strengthened cut from the disjunction

>1 V x,>1 V x,>1 V x, >1.

= 2 3 4

I1f we apply Theorem 3.1 without strengthening and choose 91 = (1 -aio)'l,

i=1,2,3,4, we obtain the cut

Snsintyn 3 1,
whose j~th coefficient is
-ai
Q'j = max ']Tal' .
ie{1,2,3,4]} 10

To apply the strengthening procedure, we note that each xj, j=1,2,3,4
i

is bounded below by 0. Using ¢° = 1 (which satisfies (6.11l) since

s " T | k ii i
o (ao-bo) =g [1'-810- (-aio)] wl, i=1,23,4, ard ¢ ag = o (1 -alo) > 0,
we obtain
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6 , 1 6 1 6 2 6. &
B = “‘1““‘3"{5('6*“‘1)’4('6““2)’3(6““3)’5( gt m))
meM
8 'minmax{-(—+m)-(-—+m)9(-£’-+m)—(-2+m)}
Nl AR A0V Sob S S8 Rk il Lt e

wn
~~
O\~
4+
-bB
Nt
R

6
(—6]:+m3)’—

wion

6 5 6 , 1
B7 = 2t;max{‘§(--6_+ml)’z(-6-+m2)’

2%

Next we apply the above Algorithm for calculating Bj:

10 * _ 23 * 23 *
—Fox §=5: Yo ~i MR m, == 702 * oy =

Thus our starting values are [m’;] = 0, [m;] = -1, [m;] = -1, [mZ] = 0.

Since k = =(-1) = (1)

2, the Iterative step is applied twice:

1 202
1. min{-—,-z,§,§}=-%, s=2;m1-=0,m2 -1+1 =0,
m3=—1,m4=0.

1; m

N
L]
8
=3
=}

L)
]

w
-

e
-

w
-

wiN

R
n
1

(S
-
®»

#

=1,m2=0,m =-1,m4=0.

1 3

These are the optimal m, and

=

1 1 4 4
By = mx{-5 -5 -3 "5} 7T

* *
-1’ [m3] i 0’ [m4] - 0; ke 2,

~
-
—
a3
(=1
—
(]
1
-
-
~—
8
N
—
L}

1
1. min { £ --};,%,%}=--}:, s=2;m1--1,m2=0,m3=0,m4=0
3, nin il -2-,-23',-;-}=%, s=4;m ==-1,m =0, m =0, m = 1.
R TR Y
—Forj=7: Y=-15 (m}) = 0, (my] = -1, [my] = -1, ;) = -3 & = 3.

1. min{— %a%:%}'%: 3=1;m1=1,m2=-1,m3=-1,m4=—1;




L8
i T , S B
2. min { 52403 5 } 5 8 = 4 m, = ¥ m, = 1. W, ;i a, (s
7/ S A 1
Je min{~5—,z,-§,—‘,—j=z, 3“-2:‘“1"‘l:‘“2=0,m3=--1,m4=0-
$ N ] 5 1 1
Bprmx g 551y

Thus the strengthened cut is

1 1 1
“~E X+ T X, v X, > -
Sk Sl Rt e B
The frequently occurring situation, when EQ} = 2, deserves special

mention. In this case the coefficients 5j’ jeJ,, are given t
i i

e ) *s .
(7.15) sj = min (A (@, + <my>), A,(e, = mgl)j
where
Aally = K.y
o A B
(7.16) m, = X1 = 12 5

* *
with oy ki’ i = 1,2, defined by (7.12), and <dn0> = the smallest integer > e

The optimal value of my = -m, is either -LmB:» or lmzl, according to whether
the minimum in (7.15) 1is attained for the first or the second term.

The strengthening procedure discussed in this section produces the
seemingly paradoxical situation that weakening a disjunction by adding a new
term to it, may result in a strengthening of the cut derived from the
disjunction; or, conversely, dropping a term from a disjunction may lead to

a weakening of the inequality derived from the disjunction. For instance,

if the disjunction used in Example 7.2 is replaced by the stronger one

X 2L ¥V 2,31 ¥V w3 L0

1 2 3

then the cut obtained by the strengthening procedure is




which is weaker than the cut of the example, since the coefficient of Xe

is 2/5 instead of 1/5. The explanation of this strange phenomenon is to
be sought in the fact that the strengthening procedure uses the lower bounds
on each term of the disjunction. TIn Example 7.2, besides the disjunction

21 Vv X, 21 V X4 >1 v Xy, > 1, the procedure also uses the information

3

that X, >0, i=1,2,3,4, When the above disjunction is strengthened by

omitting the term X, > 1, then the procedure does not any more use the infor-

mation that X, > 0.

8. Some Frequently Occurring Disjunctions

As mentioned earlier, one of the main advantages of the disjuncéive
programming approach is that it can make full use of the special structure
inherent in many combinatorial problems. 1In [8], [ 9] cutting planes afe
derived from the logical conditions of the set partitioning problem, the
linear complementarity problem, the two forms of representation for nonconvex
separable programs, etc. More general complementarity problcms are discussed
in [33], [34]. Here we illustrate the procedure on the frequently occurring

logical condition (where Xy > 0 integer, 1 €Q)

(8.1) b2 x; = 1,
ieqQ

often called a multiple choice constraint.

If all the problem constraints are of this form, we have a set par-
titioning problem. But the cut that we derive uses only one condition
(8.1), so it applies to arbitrary integer programs with at least one
equation (8.1). It also applies to mixed-integer programs, provided the

variables x,, 1 €Q, are integer-constrained.

1’




let I and J be the index sets for the basic and nonbasic variables in

a basic feasible noninteger solution of the form

(8.2) x, = a,~+ I a,,(-x,), el .
i 10 je3 11> 3

In [81, [9], several cutting planes are derived from the disjunction

. x, =1

v * :
ieQ xh=0,’v'heQ\{i}
Here we describe another cut, which in most cases turns out to be

stronger than those mentioned above. It is derived from the disjunction

(8-3) in=0 1% Exi=0,
1¢>Q1 :Le:Q2 i

clearly valid for any partition (QI’QZ) of Q in the sense of being satisfied

by every integer X satisfying (8.1).

Denoting

(8.4) By = r a k=1,2; Je30{0}] ,

iclmk i -

(8.3) can be written as

iy 1 2 2
L B.x. 28 L Bx. >8
Vv
b xj =0 \ sy x%x,.=0
jeIm, 163, J

which implies the disjunction

1 1 2 2
(8.5) ) Bjszao v 2 ijjzao s




with Bg >0, k = 1,2, Note that once the sets I(WQk, k = 1,2, are chosen
the sets JfTQl and JﬂQ2 can be 'optimized," in the sense of putting an
index j € JNQ into Q1 if (B;/Bé) 2 (B;/Bg), and in Q2 otherwise. Using

this device while applying Theorem 3.1 to (8.5) with multipliers g l/BE :

k = 1,2, we obtain the cut

(8.6)

z Bjxj =21,

with coefficients

(8.7)

We now apply the strengthening procedure of section 7 to the coefficients

By e :

pl BL
max ¢ 0 , min —-},—-21 3 jedNQ
Bo  Poj

s jeJ\Q

Bj’ J\Q (the coefficients indexed by JNQ can usually not be further

strengthened)., This of course assumes that all xj, j eJ\Q, are integer
constrained. A lower bound on )2 ka. is Bk-l, for k = 1,2, since
N, 13 0.
Jed\Qy
I % = o+ I slj‘(-xj) <1, k=1,
1eIMy jeN\Q

The multipliers ck

since

and thus the j~th coefficient of the strengthened cut becomes (Corollary 7.1.1)

oklsg - (Blg -l =1, oksl(; >0, k=12,

=1, k = 1,2, satisfy condition (7.11) of Corollary 7.1.1,




T I
Bj = min max \’—-L-k—ulk-
meM ke{l,2} k By J

with M defined by (7.5), with ]QI =2, Applying the closed form solution (7.15)
to the minimization problem involved in calculating Bj (in the special case of a

disjunction with only two terms), we obtain

k kel 1

g = OBy =By A = DT =g, k=L2
Bo
and hence
2 *
B, + <m.> B, - [m,]
By = man 1 o 7 .
Bo Bo
where
2.1 1.2
(8.8) * = M .

We have thus proved

Theorem 8,1. If (8.2) is a basic feasible noninteger solution of the
linear program associated with an integer program whose variables have to
satisfy (8.1), then for any partition (I ﬂQl, I ﬂQZ) of the set INQ, the

inequality (8.6) is a valid cut, with coefficients

/ \
1 2
(gl g
max 0, min S-‘},—%}\ 3 jedNQ
(P Fo) |
(8.9) By = ﬁ . s
B, + <m_> B, - [m_]




The linear programming optimum is obtained for X, = Xg = Xg = %, X

X

in the form of a simplex tableau in Table 8.2 (artificial variables have been

where the s?, k = 1,2, jeJ, are defined by (8.4) and m; is given by (8.8).

special case of the Theorem.

is ¢ = (6,4,3,2,2,3,1,1,1,0) and whose coefficient matrix is given in Table 8.1,

10
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We 1illustrate this cut on a set partitioning problem, which is a

Example 8.1.

=1, and x

removed).

j

1. 2 3 & 5 6 7 8 9 10

= 0 for all other j.

The associated system (8.2) is shown

1{1 1 1 1

211 1 1

3 1 1 1 1

4 1L

5 it 1 1 1 1
Table 8.1

1 "Xy “Xg Xy ~Xg X,
s 1%2 5 % 1-1 3
Sl 20w 8
SR N R SRR R |
813 "3 3 3 3 3
% 2 1 1 1 .1 2
- |y R R N TR
» SR S S T R |
ALy "8 % F 9% -3
1 2 2 1 1 .2
oL e 3.8 "9 3 TN
Table 8.2

Consider the set partitioning problem whose cost vector

-2
- Bt




Bk

We choose the disjunction corresponding to row 5 of the matrix shown in

Table 8.1, which is of the form (8.1), with Q = {3,4,5,6,8,9}.

We define 1NQ; = {4,8}, INQ, = {9}, and we have

jul §=6 j=3 j=5 f=2]|3=0
1| 2 4 2 | 2
Bel 2y - F.nm L8 g
21 2 2 i 1 2 1
P51 53 3 3. & 3| 3

Since JNQ = {3,5,6}, we need the values m; for jeJ\Q = {1,2].

: oan o 2 Koo 2
They are mo(l) =3 m0(2) sl 1 Hence

-%+1 %-0]\ 1
B, = min s = 3
1 2 1 o ;
3 3 {
|
( o L7 |
Sy |
86-min 0 , max —2—-,—1-‘)(-0 ‘,
. 3 )) !
|
/ \*
J.‘.‘. = 21
- - T I,
B, min o’maXWZ’l'?-o
3 3 ;)




1
32 = min 2 > 5 = 1
' 3

-
e

and we obtain the cut

‘or

which is considerably stronger than the traditional cuts that one can
derive from Table 8.2, and it actually implies that the nonbasic variable Xy
has to be 1 in any integer solution.

Dual cutting plane'methods have been found reasonably successful on
set partitioning problems. Using stronger cuts can only enhance the
efficiency of such methods, since the computational cost of the cut (8.9)

is quite modest,
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9., Combining Cutting Planes with Branch and Bound

The disjunctive programming approach offers various ways of combining
branch and bound with cutting planes, some of which are currently the
object of computational testing. Here we discuss one feature which seems
to us crucial.

For any problem P, let v(P) denote the value of P (i.e., of an optimal
solution to P).

Suppose we are using branch and bound to solve a mixed-integer 0-1

program P, stated as a maximization problem. If {P is the set of

i}ieQ
active subproblems (active nodes of the search tree) at a given stage of

'the procedure and ;(Pi) is the available upper bound on V(Pi) (assume, for 4
the sake of simplicity, that G(Pi) = v(LP;), where LP, is the linear program
associated with Pi)’ then Tig ;(Pi) is an upper bound on v(P). Also,

v(P), the value of the best integer solution found up to the stage we are

considering, is of course a lower bound on v(P); i.e., at any stage in the

procedure ,

(9.1) v(P) < v(P) < max T;(pi) .
ieQ
Hence the importance of finding good bounds for both sides of (9.1).
It is a crucial feature of the approach reviewed here that it can be
used to derive a cutting plane from the optimal simplex tableaus associated

with the subproblems LP

i ieQ, which provides an upper bound on v(P) at least
as good as, and often better than max ;(Pi)'

Let the linear program LP asséggated with the mixed-integer 0-1 program
P have an optimal solution of the form

(9.2) X, = 8o+ j)e::J ahj(-xj) . he1U{0}




where I and J are the index sets for the basic and nonbasic variables
respectively, and let I1 and J1 be the respective index sets for the integer

constrained variables, Here 2 ., > 0, hel, and a

ho ho < ¥, hie 11. Further,

since P 1s a maximization problem and the solution (9.2) is optimal, an > B,
Jed.
Now let (Pk}keQ be the set of active subproblems, and for keQ, let the optimal

solution to LPk’ the linear program associated with Pk’ be of the form

k k k
(9'3){( y_h = ahO + ijk ahj(-xj) > hel U{O} >

where Ik, Jk are defined with respect to LPk the same way as I, J

with respect to LP. Again agj >0, V] eJk, since each LI’k is a maximization

problem.
In order to derive a valid cutting plane from (9'3)k’ keQ, we view

the branching process as the imposition of the disjunction

k
Dkx = dO
. v X
(9.4) keQ Ax > b
x > 0

where Ax > b stands for the system

2 (" )x. Z i ’ hSI
g3 M 1 F T

Zaijaho-l, hel

jed hj L ®

expressing the conditions X, >0, hel, Xy <1, he 11, while each

Dkx 2> dk

0 is composed oi inequalities of the form

h-*—__.m




L a,.x > a
jeJ 133 {

or

)3 (—aij)xj 2 t-a

jeJ 10

corresponding to the conditions Xg < 0 or x, > 1 whose totality, together

i
with Ax > b, x > 0, defines P .
Now consider the cut derived from (9.4) on the basis of Theorem 3.1,
with the optimal dual variables (obtained by solving LPk) used as the
multipliers ek, keQ. If for keQ we dencte by (uk,vk) the optimal dual

vector associated with the k-th term of (6.4  ~ud

(9.5) ak = uka + va g qg = ukdg + vkb 3

and 1if ag > 0, keQ, then according to Theorem 3.1, the inequality

k
o
(9.6) £ (max —1)x, > 1
jeI ke oy

is satisfied by every x satisfying (9.4), i.e., by every feasible integer

solution. The condition ag > 0, keQ, amounts to requiring that v(LPk) < v(LP),

i.e., that the 'branching constraints' Dkx > dk force v(LP ) strictly below

0

v(LP), Yk €Q. This is a necessary and sufficient condition for the procedure

discussed here to be applicable. Should the condition not be satisfied for

some k ¢Q, one can use a different objective function for LP, than for the

k
rest of the subproblems — but we omit discussing this case here. Note that,
kb k k,k
since b <0, vb <0, Yk €Q, and thus o > 0 implies u d0 > 0, Yk ¢Q.

Since the multipliers (uk,vk) are optimal solutions to the linear

programs dual to LPk, k €Q, they maximize the right hand side coefficient
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a‘(; of each inequality akx > O’l(; underlying the cut (9.6) subject to the

condition that alj( < an’

We now proceed to strengthen the inequality (9.6) via the procedure of

Vied.

section 7. To do this, we have to derive lower bounds on akx, keQ. We

have
ax - gy = w0 - a8 + vE(ax - b)
> uk('Dkx - d‘(;) > -uke
where e = (1,...,1). The first inequality holds since Ax ~ b > 0 for all x

satisfying (9.4), while the second one follows from the fact that each

k
0

form xg - 1 >0, and in both cases -1 is a lower bound on the value of the

inequality of the system Dkx -d >0 is either of the form =X, > 0 or of the

left hand side. Thus

k k k

(9.7) ax > ag - ue, k eQ

holds for every x satisfying (9.4). Note that ukdg > 0 implies uk # 0 and
hence uk > 0 implies uke >0, keQ.

We now apply Corollary 7.1.1 to the system '

akx = a‘é-uke . keQ ,
(9.8) X 2 6o ,
k
Vo 2 a)
keQ
x, integer, jeJ

3 1

We choose ok = 1/uke, k €Q, which satisfies condition (7.11) of the

Corollary:




(1/uke)[al; - (QI(; - uke)] = 1, (l/uke)ala > 0 .,

The strengthened cut is then

(9.9) L B, > 1,

with

min max = - > i eJl
meM keQ ao/u e
(9.10) By =
k
o
max —& 3e3\3;
keQ o
where
(9.11) = fuenidl | £ m >0, m integer, keQ} .
keQ

The values of a?, O’g and uke needed for computing the cut coefficients, are
readily available from the cost row of the simplex tableaux associated with

the optimal solutions to LP and LPk’ ke Q. If the latter are represented in the

form (9.2) and (9.3), respectively, and if a¥ and a, denote the j-th column
k¥ j 3 ;
of Dk and A of (9.4), while Sk is the row index set for Dk, k €Q, we have
for all keQ
k k. k
a = a ,=-ud, ~va
03 0j J j
k k
= aoj - aj ’ Jed NJg
and
k k k
an 0+ u s Jed ﬂSk s

since the indices je:Sk correspond to the slack variables of the system

L - | - —— -
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-Dkx < -dg, whose costs are 0 (note that Sk(WJ = f by definition). Further,
for ) cJ'\Jk = 3N1" the reduced cost of Xy in LP, is 0, hence for all keQ
k.k k
0 = a -~-ud, ~va
0) ] ]
= a - uk
0j )
Finally,
k k.k
300 aOO -u do - vkb
k
aoo Qo ’ VkSQ .

From the above expressions we then have for ke¢Q,

k k
X aOj -aoj y jedNJ
QJ &
9.12) 3 * Jed\J
ak = a - a
0 00 00 ?
and
(9.13) ve = 0§ &
Kk 01i
ieJ ﬂSk

k k
(since ug = 0, VieSkﬂI )e

The representation (9.3)k of the optimal solution to LP, assumes that

k
the slack variable jeS, of each "branching constraint' x; S0orx > 1
that is tight at the optimum, is among the nonbasic variables with aoj > 0.

If one prefers instead to replace these slacks with the corresponding

structural variables Xy and regard the latter as '"fixed" at 0 or 1, and if

the reduced costs

Fk denotes the index set of the variables fixed in LPk’
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k k
842 ieJ ﬂFk are then the same, except for their signs, as an’ Jed ﬂSk,
and the only change required in the expressions derived above is to replace
(9.13) by

k
(9.13") uFe = 5 ja) s
01

k
ieJ I’Fk

Of course, in order to calculate a cut of the type discussed here, one
needs the reduced costs aOj for both the free and the fixed variables.

We have thus proved the following result,

Theorem 9.1. If LP and LP, k €Q, have optimal solutions of the form (9.2)
and (9.3)k respectively, with a5 > ago, k €Q, then every feasible integer
solution satisfies the inequality (9.9), with coefficients defined by (9.10),
9.11), €9.12) and (9.13) for (9.13%9].

In the special case when ,Q! = 2 and LP LP2 are obtained from LP by

1’
imposing Xy < 0 and Xy > 1 respectively (for some i e I such that 0 < a, S e
the definition of Bj for je Jl becomes
1 2 )
* *_ !
(@ /uD)+<m>  (aful) - [my] |
’ igad 0 i L 0" \
(9.10°) 8. = min .
j 1,1 2, 2 g
ag/Y; ap/uy )
with
ool = ol
* io0 i 0
(9.14) g Sialer % wepn % S
9T 1%

We now state the property of the cut (9.9) mentioned at the beginning

of this section.

Corollary 9.1.1. Adding the cut (9,9) to the constraints of LP and

performing one dual simplex pivot in the cut row reduces the value of v(LP)
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from a to a such that

00 00
(9.15) ;00 < max ago .
keQ
k k
Proof. For each keQ, aOO = a00 -ag - Now suppose (9.1) is false,

- k
i.e., ay > a5g9 Yk €Q. Then

K
30 = 300 ~ je;lli;w 304/85 > 300 " % ° VkeQ ,
s A

and hence for all keQ,

K
an > min a../p
2 3e3]p,>0 03 "3
(9.16) e
2 min aoj(aolaj) s
jedla’ >0
]
where
G’s dh
(9.17) - (RS
s h
do th ao

The second inequality in (9.16)holds since the cut (9.9) is a

strengthened version of (9.6), in the sense that

h

¢4
py < max 1, jes.
heQ Q'o

Now suppose the minimum in the second inequality of (9.16) is attained

for j = t. Since (9.16) holds for all keQ, we then have

s S S
Uo > aot(ao/at)




(i

or (since a: > 0, ag > 0), Q: > aget But this contradicts the relation

¥

< ag, implied by (9.12). i

0
Note that the Corollary remains true if the strengthened cut (9.9)

is replaced by its weaker counterpart (9.6). 1In that case, however, (9.15)

holds with equality. The remarkable fact about the property stated in the

Corollary is that by using the strengthened cut (9.9) one often has (9.15)

satisfied as strict inequality. More precisely, we have the following

Remark 9.1. (9.15) holds as strict inequality if B < ai/ag , where s

‘15 defined by (9.17), and t by '

aot(a;/ai) = miz an(ag/ai) .
jeJIaj>0

Note that for (9.15) to hold as strict inequality the pivot discussed
in the Corollary need not occur on a 'strengthened'" cut coefficient. All
that is needed, is that the coefficient on which the pivot would occur in
case the unstrengthened cut were used, should be '"strengthened" (i.e.,

reduced by the strengthening procedure).

The significance of the cut of Theorem9.1 is that it concentrates
in the form of a single inequality much of the information generated by
the branch and bound procedure up to the point where it is derived, and

thus makes it possible, if one so wishes, to start a new tree search while

preserving a good deal of information about the earlier one.
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Theorem 9.1 and its Corollary are stated for (pure or mixed) 0~1 programs ;
but the 0-1 property (as opposed to integrality) is only used for the
derivation of the lower bounds on Dkx = dg, k €Q; hence it only involves those
variables on which branching has occurred. The results are therefore valid
for mixed-integer programs with some 0-1 variables, provided the strengthening

procedure is only used on cuts derived from branching on 0-1 variables.

Example 9.1. Consider the problem in the variables xj =10, ool 6

xj =0o0r 1, j = 1,4; xj integer, j = 2,3, whose linear programming relaxation

has the optimal solution shown in Table 8.1.

1 -Xg X, --x5 --x6
X 1.1 2.0 o2 .05 1.17
% Xy L 4 1.3 -,01 .07
x2 09 -03 04 ".04 .1
Table 9.1

If we solve the problem by branch and bound, using the rules of always

selecting for branching (a) LP, with the largest ago, and (b) Xg with the

k
largest max {up penalty, down penalty}, we generate the search tree shown
in Fig. 9.1. The optimal solution is x = (0,2,1,0,20,0), with value -1.9,

found at node 6. To prove optimality, we had to generate two more nodes,

i.e., the total number of nodes generated (apart from the starting node) is 8.




1 —

Suppose now that after generating the first four nodes, we wish to use

the available information to derive a cut. At that point there are three

active nodes, associated with LP. , for k = 2,3,4. The corresponding reduced

k’

cost coefficients agj, i ch, are shown in Table 9.2, The slack variables

of the "branching constraints" x, <0, x; > 1, x, <0, and x, > 1 are

1 1
denoted by Xg5 Xgy Xg and X0 respectively.

K 2 3 4
#1s 4 8 17 9 35 &35 1@ 1 6
a‘(;j & 6.7 5. 1.52] 5. 6.3 .1 82| 4. 6.7 5. 1.52
K
, ato 29 1 A6
Table 9.2




,,,,, , _ - |

-0y -

The coefficients al;, a: and uke, extracted from Table 9.2 and the cost

row of Table 9.1, are as follows:

2 2 2 g2 e BT, SR
k= 2: e 4; ue Uy = agg 5% @y = 853 = 84, 2,
2 2 2 - 2 SR .
o, =8y - ay = -6.5, ag = 805 « 05, g = 3gp = 8p¢ = e Ll
3 P 3

s a?) =1; u3e = u:; + ug = 11.3; ag =2, o = 25 o = -.05, o = .35;

k = 4: ag » Edi e uio = 6.7; ag = -2, 02 = .2, Qg = .05, ag = -.35.

The coefficients of the strengthened cut are shown below, where

M= {meR3 Im1 +m, + my >0, m; integer, i = 1.2.31.

(-2/5) + m, (2/11.3) + m,

o = min max ’ ’
3 meM { 4/5 1/11.3 5.7/6.7

(-2/6.7) + m, -
f = ,75,

with m = (1,-1,0).

(-6.5/5) + m, (.2/11.3) + m, (.2/6.7) + my

::; b 4/5 # 1/11.3 S % |

= .035

with m = (1,-1,0)

Adding to the optimal tableau of LP the cut

75 x5 + .035 X, + 40125 %o + .35 x, 2 1
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produces Table 9.3 and the two pivots shown in Tables 9.3 and 9.4 produce

the optimal Tableau 9.5. Thus no further branching is required.

1 ~Xqy X, -x5 ~Xe
Xq 1.1 2.0 2 .05 1.17
x1 o2 4 1.3 -.01 .07
xz .9 -03 .4 -004 .1
s -1.0 -.035 -.,0125 -.35
Isble 9.3
-8 -X, -x5 -x6
X, -1,57 2,67 .106 .01675 1.117
X, -.333 .533 1.281 -.01675 -.117
xz 1.3 -n4 .414 --035 .240
x3 1.33 -1.33 047 .01675 467
Table 9.4
1 -8 X, -x5 ~Xg
xo -109 2.687 1.387 1.0 1.0
x5 20,0 -31.8 -73.0 -60.0 7.0
X, 2,0 =2,0
Xy 1.0 1.0

Table 9.5
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10. Dpisjunctions from Conditional Bounds

In solving pure or mixed integer programs by branch and bound, the
most widely used rule for breaking up the feasible set 1s to choose an
integer-constrained variabl<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>